Release of latent heat associated with the freezing of pore water resu的简体中文翻译

Release of latent heat associated w

Release of latent heat associated with the freezing of pore water results in the maintenance ofisothermal temperatures at or just below zero-degrees centigrade within the freezing active-layer. Thisperiod of isothermal conditions within the active layer, commonly termed the zero-curtain, is both aphysical boundary preventing cooling in the underlying permafrost and a length of time (Outcalt et al.1990). The zero curtain establishes in the active layer about the phase-equilibrium temperature anddecouples the permafrost from the atmosphere for its duration (Osterkamp and Romanovsky 1997).Following the closure of the zero curtain temperature at the top of permafrost is permitted to declineat a rate governed by the thermal conductivity of the snow pack and the frozen active layer and theprevailing thermal gradient between the atmosphere and permafrost (Burn and Zhang 2009). Theclosure of the zero curtain, expressed by the decline in temperature at the top of permafrost, denotesthe completion of active-layer freezeback and the onset of the cooling period (Burn and Zhang 2009;Karunaratne 2011). Given that the zero curtain is associated with latent heat released from waterduring soil freezing its development in dry material is not possible. This effect was described for thefirst time by Sumgin in Russian Arctic in 1940.• Zero-curtain effect was analyzed at 4 different sites in Tiksi during fall seasons in 2012-2014 with focuson September-October 2013. Soil water contents at these sites ranges from wet to dry depending onthe site location.• The duration of zero-curtain effect occurring in Tiksi at the 4 different locations varies from 25 to 50days for different years. Its onset depends on the air temperature falling below 0ºC. Its durationdepends on the soil water content of the specific area.• Our study shows that Tiksi Observatory Site is horizontally inhomogeneous containing 10% dry soil and90% wet soil regions. Depending on the soil water content different regions create different impact tothe energy budget.• Our measurements show that surface (“skin”) temperature follows the air temperature profile rather thansoil temperature, that is, its dependence on soil type and water content is weak. In other words, thezero-curtain effect has a weak impact on the skin temperature. This result is important for atmosphericmodels and bulk flux parameterization. However, the zero-curtain effect creates substantial vertical andhorizontal temperature gradients in upper soil layers during transition season
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
与孔隙水冻结相关的潜热的释放导致在<br>冻结活性层内等温温度保持在零摄氏度或略低于零摄氏度。此<br>的有源层内的等温条件期间,通常称为零帘,无论是一个<br>物理边界防止在底层多年冻土冷却和的时间长度(Outcalt等人<br>1990)。零幕在活动层中建立在相平衡温度附近,并<br>在其持续时间内使永久冻土与大气解耦(Osterkamp and Romanovsky 1997)。<br>永久冻土顶部零幕温度关闭后,允许下降<br>其速度取决于积雪和冻结的活性层的热导率,以及<br>大气和永久冻土之间的主要热梯度(Burn和Zhang,2009年)。<br>永冻层顶部温度下降表示零幕的关闭,表示<br>活动层的回冻已经完成,冷却期开始(Burn和Zhang,2009;<br>Karunaratne,2011)。考虑到零幕与<br>土壤冻结期间从水中释放的潜热有关,因此不可能在干燥的材料中进行开发。<br>Sumgin于1940年在俄罗斯北极地区首次描述了这种效应。<br>•在2012-2014年秋季的Tiksi的4个不同地点对零幕效应进行了分析,重点是<br>时间为2013年9月至10月。这些地点的土壤水分范围从潮湿到干燥,具体取决于<br>地点。<br>•提克西在4个不同地点发生的零幕效应的持续时间,<br>不同年份从25 天到50 天不等。它的发作取决于气温低于0ºC。它的持续时间<br>取决于特定区域的土壤含水量。<br>•我们的研究表明,提克西天文台在水平方向上是不均匀的,包含10%的干燥土壤和<br>90%的潮湿土壤区域。根据土壤含水量的不同,不同地区<br>对能源预算的影响也不同。<br>•我们的测量表明,表面(“皮肤”)温度遵循空气温度曲线,而不是空气温度曲线<br>土壤温度,即它对土壤类型和水分的依赖性很弱。换句话说,<br>零幕效应对皮肤温度的影响很小。该结果对于大气<br>模型和体积通量参数化非常重要。但是,<br>在过渡季节,零幕效应会在上层土壤层中产生明显的垂直和水平温度梯度
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Release of latent heat associated with the freezing of pore water results in the maintenance of<br>isothermal temperatures at or just below zero-degrees centigrade within the freezing active-layer. This<br>period of isothermal conditions within the active layer, commonly termed the zero-curtain, is both a<br>physical boundary preventing cooling in the underlying permafrost and a length of time (Outcalt et al.<br>1990). The zero curtain establishes in the active layer about the phase-equilibrium temperature and<br>decouples the permafrost from the atmosphere for its duration (Osterkamp and Romanovsky 1997).<br>Following the closure of the zero curtain temperature at the top of permafrost is permitted to decline<br>at a rate governed by the thermal conductivity of the snow pack and the frozen active layer and the<br>prevailing thermal gradient between the atmosphere and permafrost (Burn and Zhang 2009). The<br>closure of the zero curtain, expressed by the decline in temperature at the top of permafrost, denotes<br>the completion of active-layer freezeback and the onset of the cooling period (Burn and Zhang 2009;<br>Karunaratne 2011). Given that the zero curtain is associated with latent heat released from water<br>during soil freezing its development in dry material is not possible. This effect was described for the<br>first time by Sumgin in Russian Arctic in 1940.<br>• Zero-curtain effect was analyzed at 4 different sites in Tiksi during fall seasons in 2012-2014 with focus<br>on September-October 2013. Soil water contents at these sites ranges from wet to dry depending on<br>the site location.<br>• The duration of zero-curtain effect occurring in Tiksi at the 4 different locations varies from 25 to 50<br>days for different years. Its onset depends on the air temperature falling below 0ºC. Its duration<br>depends on the soil water content of the specific area.<br>• Our study shows that Tiksi Observatory Site is horizontally inhomogeneous containing 10% dry soil and<br>90% wet soil regions. Depending on the soil water content different regions create different impact to<br>the energy budget.<br>• Our measurements show that surface (“skin”) temperature follows the air temperature profile rather than<br>soil temperature, that is, its dependence on soil type and water content is weak. In other words, the<br>zero-curtain effect has a weak impact on the skin temperature. This result is important for atmospheric<br>models and bulk flux parameterization. However, the zero-curtain effect creates substantial vertical and<br>horizontal temperature gradients in upper soil layers during transition season
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
与孔隙水冻结有关的潜热释放导致<br>冻结活跃层内零摄氏度或略低于零摄氏度的等温温度。这个<br>活动层内的等温条件周期,通常称为零幕,是指<br>防止下伏永久冻土冷却的物理边界和一段时间(Outcalt等人。<br>1990年)。在活性层中建立了关于相平衡温度和<br>使永久冻土在其持续时间内与大气分离(Osterkamp和Romanovsky,1997)。<br>在永久冻土顶部零幕温度关闭后,允许下降<br>速度由积雪和冰冻活跃层的热导率和<br>大气和永久冻土之间的普遍热梯度(Burn和Zhang 2009)。这个<br>零幕的关闭,用永久冻土顶部的温度下降来表示,表示<br>活性层冻结的完成和冷却期的开始(Burn and Zhang 2009;<br>卡鲁纳拉特,2011年)。假设零幕与水释放的潜热有关<br>在土壤冻结期间,它不可能在干物质中发育。这种效果被描述为<br>苏姆金于1940年首次在俄罗斯北极。<br>•2012-2014年秋季,在Tiksi的4个不同地点分析了零幕效应,重点是<br>2013年9月至10月。这些地点的土壤含水量从湿到干不等,具体取决于<br>现场位置。<br>•Tiksi在4个不同位置发生的零幕效应持续时间从25到50不等<br>不同年份的日子。它的开始取决于气温降到0摄氏度以下。它的持续时间<br>取决于特定区域的土壤含水量。<br>•我们的研究表明,Tiksi观测点水平不均匀,含有10%的干土和<br>90%为湿土区。根据土壤含水量的不同,不同地区对<br>能源预算。<br>•我们的测量表明,表面(“皮肤”)温度符合空气温度分布,而不是<br>土壤温度对土壤类型和含水量的依赖性较弱。换句话说<br>零幕效应对皮肤温度的影响很弱。这个结果对大气很重要<br>模型和体通量参数化。然而,零幕效应创造了实质性的垂直和<br>过渡季节上层土壤水平温度梯度<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: