Solutions to this problem have generally fallen under two broad catego的简体中文翻译

Solutions to this problem have gene

Solutions to this problem have generally fallen under two broad categories. The first utilizes a pulsed source and range-gated receiver. In this approach, only photons that arrive within the receiver gate on time are collected [2, 3, 4, 5, 6]. The gate timing can be varied to coincide with the expected target location, and the target range is determined by measuring the pulse time of flight. The backscatter component is attenuated while the receiver is gated off. Additionally, since most practical blue/green laser sources have been frequency doubled from the IR, the conversion efficiency may be higher for pulsed laser sources due to the higher peak powers. The drawback of the pulsed range-gated technique is that it requires a stable, high energy, short-pulse (less than 5 ns) laser source, which can be difficult to synthesize at blue/green wavelengths. Additionally, gating a large area, high gain receiver like a photomultiplier tube (PMT) is difficult electronically due to the large voltages needed, as well as significant impedance mismatch between driver circuit and PMT dynodes. The use of short pulses also requires a wideband receiver, which can introduce more noise. However, the pulsed/range-gated technique in theory provides a relatively straightforward method for suppressing backscatter while providing target range information.The other approach aims to reduce backscatter by intensity modulating a CW laser source at RF frequencies (more than 0.01–1 GHz) [7, 8, 9]. In this scenario, range is determined by calculating the phase of the detected RF envelope relative to the modulation drive signal using a standard RF coherent receiver. The major motivation of the intensity modulated method lies in its ability to separate target photons from backscatter photons. Here, nonscattered and minimally forward-scattered target-reflected photons retain their modulation. However, backscattered returns, distributed in range between the source and target, destructively interfere with each other, causing the modulation of the backscattered light to wash-out at high frequencies [10, 11, 12]. The target (AC) component and backscatter (DC) component can be separated at the receiver with a bandpass filter centered at the modulation frequency.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
这个问题的解决方案通常分为两大类。第一种使用脉冲源和距离门控接收器。在这种方法中,只有准时到达接收器门内的光子才会被收集 [2, 3, 4, 5, 6]。门定时可以改变以与预期的目标位置一致,目标范围是通过测量飞行脉冲时间来确定的。当接收器关闭时,反向散射分量被衰减。此外,由于大多数实用的蓝/绿激光源已从 IR 倍频,因此脉冲激光源的转换效率可能更高,因为峰值功率更高。脉冲距离门控技术的缺点是它需要稳定、高能量、短脉冲(小于 5 ns)的激光源,在蓝色/绿色波长下可能难以合成。此外,由于需要大电压,以及驱动电路和 PMT 倍增极之间的显着阻抗失配,很难以电子方式对大面积、高增益接收器(如光电倍增管 (PMT))进行门控。短脉冲的使用还需要宽带接收器,这会引入更多噪声。然而,脉冲/距离门控技术理论上提供了一种相对简单的方法来抑制反向散射,同时提供目标距离信息。这会引入更多的噪音。然而,脉冲/距离门控技术理论上提供了一种相对简单的方法来抑制反向散射,同时提供目标距离信息。这会引入更多的噪音。然而,脉冲/距离门控技术理论上提供了一种相对简单的方法来抑制反向散射,同时提供目标距离信息。<br><br>另一种方法旨在通过在射频频率(超过 0.01–1 GHz)下对连续波激光源进行强度调制来减少反向散射 [7, 8, 9]。在这种情况下,距离是通过使用标准 RF 相干接收器计算检测到的 RF 包络相对于调制驱动信号的相位来确定的。强度调制方法的主要动机在于它能够将目标光子与反向散射光子分开。在这里,非散射和最小前向散射的目标反射光子保持其调制。然而,分布在源和目标之间的范围内的反向散射返回相互破坏性干扰,导致反向散射光的调制在高频下消失 [10, 11, 12]。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
这个问题的解决办法一般分为两大类。第一种利用脉冲源和距离选通接收机。在这种方法中,只收集准时到达接收器门的光子[2,3,4,5,6]。门定时可以改变以与预期目标位置一致,目标范围通过测量飞行脉冲时间来确定。当接收器选通关闭时,后向散射分量衰减。此外,由于大多数实用的蓝/绿激光源已从IR倍频,因此由于峰值功率较高,脉冲激光源的转换效率可能更高。脉冲范围选通技术的缺点是需要稳定、高能、短脉冲(小于5 ns)激光源,在蓝/绿波长下很难合成。此外,由于所需的大电压以及驱动电路和PMT倍增管节点之间的显著阻抗失配,对大面积、高增益接收器(如光电倍增管(PMT))进行选通在电子上是困难的。短脉冲的使用还需要宽带接收器,这会引入更多的噪声。然而,理论上,脉冲/距离选通技术为抑制后向散射提供了一种相对简单的方法,同时提供了目标距离信息。<br>另一种方法旨在通过在射频频率(大于0.01–1)下对连续激光源进行强度调制来减少后向散射 [7,8,9]。在这种情况下,通过使用标准射频相干接收机计算检测到的射频包络相对于调制驱动信号的相位来确定范围。强度调制方法的主要动机在于其将目标光子与后向散射光子分离的能力。在这里,非散射和最小前向散射的目标反射光子保留其调制。然而,分布在源和目标之间范围内的后向散射回波相互干扰,导致后向散射光的调制在高频下消失[10、11、12]。目标(AC)分量和后向散射(DC)分量可以在接收器处用以调制频率为中心的带通滤波器分离。<br>
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
这个问题的解决方案通常分为两大类。第一种利用脉冲源和距离选通接收器。在这种方法中,只收集准时到达接收器门内的光子[2,3,4,5,6]。可以改变闸门定时,使其与预期目标位置一致,通过测量脉冲飞行时间来确定目标范围。当接收器关闭时,反向散射分量被衰减。此外,由于大多数实用的蓝/绿激光源已经从红外频率加倍,由于更高的峰值功率,脉冲激光源的转换效率可能更高。脉冲距离选通技术的缺点是,它需要稳定、高能量、短脉冲(小于5 ns)的激光源,这在蓝/绿波长下很难合成。此外,由于所需的大电压以及驱动电路和光电倍增管倍增管之间的显著阻抗不匹配,像光电倍增管(PMT)这样的大面积高增益接收器很难用电子学方法选通。短脉冲的使用还需要宽带接收器,这会引入更多噪声。然而,脉冲/距离选通技术在理论上提供了一种相对简单的方法来抑制反向散射,同时提供目标距离信息。另一种方法旨在通过在射频频率(大于0.01–1千兆赫)[7,8,9]下对连续波激光源进行强度调制来减少反向散射。在这种情况下,通过使用标准射频相干接收器计算检测到的射频包络相对于调制驱动信号的相位来确定距离。强度调制方法的主要动机在于其从反向散射光子中分离目标光子的能力。在这里,非散射和最小前向散射的目标反射光子保持它们的调制。然而,分布在源和目标之间范围内的反向散射回波相互破坏性干扰,导致反向散射光的调制在高频下消失[10,11,12]。目标(交流)分量和反向散射(DC)分量可以在接收器处用以调制频率为中心的带通滤波器分离。
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: