Since both EDLC and pseudocapacitance are surface phenomena, high-surf的简体中文翻译

Since both EDLC and pseudocapacitan

Since both EDLC and pseudocapacitance are surface phenomena, high-surface-area mesoporous carbon and activated carbons (specific surface area: 1000–2000 m2 g−1) have been widely used as electrode materials in both academic and commercial supercapacitors 16, 17, 18, 19. Taking a specific surface area of 1000 m2 g−1 for carbon as an example, its ideal attainable capacitance could be 200–500 F g−1. However, the practically obtained values are of only a few tens of F g−1. Activated carbons have a wide pore size distribution, consisting of micropores (50 nm) 17, 18, with most of the surface area of activated carbons being on the scale of micropores [20]. Pores of this size are often poorly or non-accessible for electrolyte ions (especially for organic electrolytes), and thus are incapable of supporting an electrical double layer. By contrast, mesopores contribute the most to the capacitance in an electrical double-layer capacitor 21, 22, 23. However, recent experimental and theoretical studies have demonstrated that charge storage in pores 0.5–2 nm in size (smaller than the size of solvated electrolyte ions) increased with decreasing pore size due to the closer approach of the ion center to the electrode surface in the smaller pores 18, 24, 25, 26. Pores less than 0.5 nm wide are too small for double layer formation [26]. Currently available activated carbon materials have a high surface area but unfortunately a low mesoporosity, and hence a limited capacitance due to a low electrolyte accessibility [20]. This translates to the limited energy density of the resultant supercapacitors (Eqn 3). The low electrolyte accessibility of activated carbons, coupled with their poor electrical conductivity, produces a high internal resistance and hence a low power density for the capacitors (Eqn 4) [20]. Consequently, a limited energy density (4–5 Wh kg−1) and a limited power density (1–2 kW kg−1) have been obtained for currently available supercapacitors based on the activated carbon electrodes [20]. Clearly, therefore, new materials are needed to overcome the drawbacks of activated carbon electrode materials to improve the performances for supercapacitors.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
由于EDLC和假电容都是表面现象,因此高表面积中孔碳和活性炭(比表面积:1000–2000 m2 g-1)已被广泛用作学术和商业超级电容器的电极材料16,17,18 ,19.以碳的比表面积为1000 m2 g-1为例,其理想的可达到电容为200–500 F g-1。然而,实际获得的值仅为F g-1的几十。活性炭具有很宽的孔径分布,由微孔(50 nm)17、18组成,大部分活性炭的表面积在微孔的范围内[20]。这种尺寸的孔通常对于电解质离子而言是差的或不可接近的(特别是对于有机电解质而言),因此不能支撑双电层。相比之下,中孔对双电层电容器21、22、23的电容影响最大。但是,最近的实验和理论研究表明,电荷存储在0.5–2 nm的孔中(小于溶剂化电解质离子的大小)在较小的孔18、24、25、26中,由于离子中心更靠近电极表面,因此随着孔尺寸的减小而增加。小于0.5 nm的孔对于双层形成而言太小[26]。当前可用的活性炭材料具有高的表面积,但是不幸的是具有低的介孔率,并且由于低的电解质可及性因此具有有限的电容[20]。这转化为所得超级电容器的有限能量密度(等式3)。活性炭对电解液的可及性低,再加上其较差的电导率,会产生较高的内部电阻,从而使电容器的功率密度较低(公式4)[20]。因此,对于基于活性炭电极的当前可用的超级电容器,已经获得了有限的能量密度(4-5 Wh kg-1)和有限的功率密度(1-2 kW kg-1)[20]。因此,显然,需要新的材料来克服活性炭电极材料的缺点,以改善超级电容器的性能。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
Since both EDLC and pseudocapacitance are surface phenomena, high-surface-area mesoporous carbon and activated carbons (specific surface area: 1000–2000 m2 g−1) have been widely used as electrode materials in both academic and commercial supercapacitors 16, 17, 18, 19. Taking a specific surface area of 1000 m2 g−1 for carbon as an example, its ideal attainable capacitance could be 200–500 F g−1. However, the practically obtained values are of only a few tens of F g−1. Activated carbons have a wide pore size distribution, consisting of micropores (50 nm) 17, 18, with most of the surface area of activated carbons being on the scale of micropores [20]. Pores of this size are often poorly or non-accessible for electrolyte ions (especially for organic electrolytes), and thus are incapable of supporting an electrical double layer. By contrast, mesopores contribute the most to the capacitance in an electrical double-layer capacitor 21, 22, 23. However, recent experimental and theoretical studies have demonstrated that charge storage in pores 0.5–2 nm in size (smaller than the size of solvated electrolyte ions) increased with decreasing pore size due to the closer approach of the ion center to the electrode surface in the smaller pores 18, 24, 25, 26. Pores less than 0.5 nm wide are too small for double layer formation [26]. Currently available activated carbon materials have a high surface area but unfortunately a low mesoporosity, and hence a limited capacitance due to a low electrolyte accessibility [20]. This translates to the limited energy density of the resultant supercapacitors (Eqn 3). The low electrolyte accessibility of activated carbons, coupled with their poor electrical conductivity, produces a high internal resistance and hence a low power density for the capacitors (Eqn 4) [20]. Consequently, a limited energy density (4–5 Wh kg−1) and a limited power density (1–2 kW kg−1) have been obtained for currently available supercapacitors based on the activated carbon electrodes [20]. Clearly, therefore, new materials are needed to overcome the drawbacks of activated carbon electrode materials to improve the performances for supercapacitors.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
由于EDLC和赝电容都是表面现象,高比表面积介孔炭和活性炭(比表面积:1000-2000m2 g-1)被广泛用作学术和商业超级电容器16、17、18、19的电极材料。以碳的比表面积为1000 m2 g-1为例,其理想可达到的电容为200-500 F g-1。然而,实际获得的值只有几十个F g-1。活性炭具有很宽的孔径分布,由微孔(50nm)17、18组成,活性炭的表面积大多在微孔尺度上[20]。这种大小的孔隙通常很难或无法接触到电解质离子(尤其是有机电解质),因此无法支撑电双层。相比之下,介孔对双电层电容器21、22、23的电容贡献最大。然而,最近的实验和理论研究表明,由于在较小的孔18、24、25、26中离子中心与电极表面的距离较近,随着孔尺寸的减小,0.5–2nm(小于溶剂化电解质离子的尺寸)的孔中电荷存储量增加。小于0.5nm宽的孔隙太小,无法形成双层[26]。目前可用的活性炭材料具有较高的比表面积,但不幸的是具有较低的介孔性,因此由于电解质可及性较低,电容有限[20]。这转化为合成超级电容器的有限能量密度(Eqn 3)。活性炭的低电解质可及性,加上其导电性差,产生高内阻,因此电容器的功率密度低(Eqn 4)[20]。因此,基于活性炭电极的当前可用超级电容器的有限能量密度(4–5 Wh kg-1)和有限功率密度(1–2 kW kg-1)已经获得[20]。显然,为了改善超级电容器的性能,需要新材料来克服活性炭电极材料的缺点。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: