The principle of energy storage in a supercapacitor can be either (i) 的简体中文翻译

The principle of energy storage in

The principle of energy storage in a supercapacitor can be either (i) electrostatic charge accumulation at the electrode/electrolyte interface (electrical double layer capacitance, EDLC), as schematically shown in Fig. 1, or (ii) charge transfer, via reversible (Faradaic) redox reaction(s), to redox materials (e.g. conductive polymers, metal oxide nanoparticles) on the surface of electrode (pseudo-capacitance). In practical supercapacitors, the two storage mechanisms often work simultaneously [16]. Different charge transfer processes involved in the EDLC and pseudo-capacitance 4, 5, 16. In EDLC, the energy is stored through ion adsorption (a purely electrostatic process) at the electrode-electrolyte interface with no charge transfer across the electrodes, suggesting a non-faradic process. By contrast, pseudo-capacitance arises from reversible redox reaction(s) between the electrolyte and active species on the surface of electrodes. Although pseudo-capacitance higher than EDLC capacitance can be achieved, supercapacitors based on pseudo-capacitance often suffer from the poor electrical conductivity of the electroactive species, and hence demonstrate low power density and cycling stability. Therefore, the combination of both EDLC and pseudo-capacitance presents an effective means to improve the overall capacitance of a supercapacitor.
0/5000
源语言: -
目标语言: -
结果 (简体中文) 1: [复制]
复制成功!
超级电容器中的能量存储原理可以是(i)如图1所示,在电极/电解质界面(双电层电容,EDLC)上的静电荷积累,或者(ii)通过可逆的电荷转移(法拉第氧化还原反应,可还原电极表面上的氧化还原材料(例如,导电聚合物,金属氧化物纳米粒子)(伪电容)。在实际的超级电容器中,这两种存储机制通常同时工作[16]。EDLC和伪电容4、5、16中涉及不同的电荷转移过程。在EDLC中,能量通过离子吸附(纯静电过程)存储在电极-电解质界面处,而没有电荷跨电极转移,这表明非法拉第过程。相比之下,假电容是由电解质与电极表面活性物质之间的可逆氧化还原反应引起的。尽管可以实现比EDLC电容更高的伪电容,但基于伪电容的超级电容器经常遭受电活性物质导电性差的困扰,因此显示出低功率密度和循环稳定性。因此,EDLC和伪电容的结合提供了一种改善超级电容器总电容的有效手段。因此显示出低功率密度和循环稳定性。因此,EDLC和伪电容的结合提供了一种改善超级电容器总电容的有效手段。因此显示出低功率密度和循环稳定性。因此,EDLC和伪电容的结合提供了一种改善超级电容器总电容的有效手段。
正在翻译中..
结果 (简体中文) 2:[复制]
复制成功!
The principle of energy storage in a supercapacitor can be either (i) electrostatic charge accumulation at the electrode/electrolyte interface (electrical double layer capacitance, EDLC), as schematically shown in Fig. 1, or (ii) charge transfer, via reversible (Faradaic) redox reaction(s), to redox materials (e.g. conductive polymers, metal oxide nanoparticles) on the surface of electrode (pseudo-capacitance). In practical supercapacitors, the two storage mechanisms often work simultaneously [16]. Different charge transfer processes involved in the EDLC and pseudo-capacitance 4, 5, 16. In EDLC, the energy is stored through ion adsorption (a purely electrostatic process) at the electrode-electrolyte interface with no charge transfer across the electrodes, suggesting a non-faradic process. By contrast, pseudo-capacitance arises from reversible redox reaction(s) between the electrolyte and active species on the surface of electrodes. Although pseudo-capacitance higher than EDLC capacitance can be achieved, supercapacitors based on pseudo-capacitance often suffer from the poor electrical conductivity of the electroactive species, and hence demonstrate low power density and cycling stability. Therefore, the combination of both EDLC and pseudo-capacitance presents an effective means to improve the overall capacitance of a supercapacitor.
正在翻译中..
结果 (简体中文) 3:[复制]
复制成功!
超级电容器的储能原理可以是(i)如图1所示在电极/电解质界面处的静电电荷积聚(电双层电容,EDLC),或者(ii)通过可逆(法拉第)氧化还原反应将电荷转移到氧化还原材料(例如导电聚合物、金属氧化物纳米粒子)在电极表面(假电容)。在实际的超级电容器中,这两种存储机制通常同时工作[16]。EDLC中所涉及的电荷转移过程和赝电容4、5、16。在EDLC中,能量是通过离子吸附(纯静电过程)在电极-电解液界面上储存的,电极间没有电荷转移,这表明是一个非法拉第过程。相比之下,假电容是由电解液和电极表面活性物质之间的可逆氧化还原反应产生的。虽然可以获得比EDLC电容更高的伪电容,但基于伪电容的超级电容器往往存在电活性组分导电性差的问题,因而具有低的功率密度和循环稳定性。因此,EDLC和伪电容的结合是提高超级电容器总电容的有效手段。<br>
正在翻译中..
 
其它语言
本翻译工具支持: 世界语, 丹麦语, 乌克兰语, 乌兹别克语, 乌尔都语, 亚美尼亚语, 伊博语, 俄语, 保加利亚语, 信德语, 修纳语, 僧伽罗语, 克林贡语, 克罗地亚语, 冰岛语, 加利西亚语, 加泰罗尼亚语, 匈牙利语, 南非祖鲁语, 南非科萨语, 卡纳达语, 卢旺达语, 卢森堡语, 印地语, 印尼巽他语, 印尼爪哇语, 印尼语, 古吉拉特语, 吉尔吉斯语, 哈萨克语, 土库曼语, 土耳其语, 塔吉克语, 塞尔维亚语, 塞索托语, 夏威夷语, 奥利亚语, 威尔士语, 孟加拉语, 宿务语, 尼泊尔语, 巴斯克语, 布尔语(南非荷兰语), 希伯来语, 希腊语, 库尔德语, 弗里西语, 德语, 意大利语, 意第绪语, 拉丁语, 拉脱维亚语, 挪威语, 捷克语, 斯洛伐克语, 斯洛文尼亚语, 斯瓦希里语, 旁遮普语, 日语, 普什图语, 格鲁吉亚语, 毛利语, 法语, 波兰语, 波斯尼亚语, 波斯语, 泰卢固语, 泰米尔语, 泰语, 海地克里奥尔语, 爱尔兰语, 爱沙尼亚语, 瑞典语, 白俄罗斯语, 科西嘉语, 立陶宛语, 简体中文, 索马里语, 繁体中文, 约鲁巴语, 维吾尔语, 缅甸语, 罗马尼亚语, 老挝语, 自动识别, 芬兰语, 苏格兰盖尔语, 苗语, 英语, 荷兰语, 菲律宾语, 萨摩亚语, 葡萄牙语, 蒙古语, 西班牙语, 豪萨语, 越南语, 阿塞拜疆语, 阿姆哈拉语, 阿尔巴尼亚语, 阿拉伯语, 鞑靼语, 韩语, 马其顿语, 马尔加什语, 马拉地语, 马拉雅拉姆语, 马来语, 马耳他语, 高棉语, 齐切瓦语, 等语言的翻译.

Copyright ©2024 I Love Translation. All reserved.

E-mail: